19
0

Zero Shot Composed Image Retrieval

Main:7 Pages
4 Figures
Bibliography:1 Pages
2 Tables
Abstract

Composed image retrieval (CIR) allows a user to locate a target image by applying a fine-grained textual edit (e.g., ``turn the dress blue'' or ``remove stripes'') to a reference image. Zero-shot CIR, which embeds the image and the text with separate pretrained vision-language encoders, reaches only 20-25\% Recall@10 on the FashionIQ benchmark. We improve this by fine-tuning BLIP-2 with a lightweight Q-Former that fuses visual and textual features into a single embedding, raising Recall@10 to 45.6\% (shirt), 40.1\% (dress), and 50.4\% (top-tee) and increasing the average Recall@50 to 67.6\%. We also examine Retrieval-DPO, which fine-tunes CLIP's text encoder with a Direct Preference Optimization loss applied to FAISS-mined hard negatives. Despite extensive tuning of the scaling factor, index, and sampling strategy, Retrieval-DPO attains only 0.02\% Recall@10 -- far below zero-shot and prompt-tuned baselines -- because it (i) lacks joint image-text fusion, (ii) uses a margin objective misaligned with top-KK metrics, (iii) relies on low-quality negatives, and (iv) keeps the vision and Transformer layers frozen. Our results show that effective preference-based CIR requires genuine multimodal fusion, ranking-aware objectives, and carefully curated negatives.

View on arXiv
@article{kakarla2025_2506.06602,
  title={ Zero Shot Composed Image Retrieval },
  author={ Santhosh Kakarla and Gautama Shastry Bulusu Venkata },
  journal={arXiv preprint arXiv:2506.06602},
  year={ 2025 }
}
Comments on this paper