ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.05396
21
0

Talk2SAM: Text-Guided Semantic Enhancement for Complex-Shaped Object Segmentation

3 June 2025
Luka Vetoshkin
Dmitry Yudin
ArXiv (abs)PDFHTML
Main:12 Pages
9 Figures
Bibliography:2 Pages
4 Tables
Abstract

Segmenting objects with complex shapes, such as wires, bicycles, or structural grids, remains a significant challenge for current segmentation models, including the Segment Anything Model (SAM) and its high-quality variant SAM-HQ. These models often struggle with thin structures and fine boundaries, leading to poor segmentation quality. We propose Talk2SAM, a novel approach that integrates textual guidance to improve segmentation of such challenging objects. The method uses CLIP-based embeddings derived from user-provided text prompts to identify relevant semantic regions, which are then projected into the DINO feature space. These features serve as additional prompts for SAM-HQ, enhancing its ability to focus on the target object. Beyond improving segmentation accuracy, Talk2SAM allows user-controllable segmentation, enabling disambiguation of objects within a single bounding box based on textual input. We evaluate our approach on three benchmarks: BIG, ThinObject5K, and DIS5K. Talk2SAM consistently outperforms SAM-HQ, achieving up to +5.9\% IoU and +8.3\% boundary IoU improvements. Our results demonstrate that incorporating natural language guidance provides a flexible and effective means for precise object segmentation, particularly in cases where traditional prompt-based methods fail. The source code is available on GitHub:this https URL

View on arXiv
Comments on this paper