ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.03469
99
0

Verification-Guided Falsification for Safe RL via Explainable Abstraction and Risk-Aware Exploration

4 June 2025
Tuan Le
Risal Shahriar Shefin
Debashis Gupta
Thai Le
Sarra Alqahtani
    OffRL
ArXiv (abs)PDFHTML
Main:7 Pages
7 Figures
Bibliography:1 Pages
Abstract

Ensuring the safety of reinforcement learning (RL) policies in high-stakes environments requires not only formal verification but also interpretability and targeted falsification. While model checking provides formal guarantees, its effectiveness is limited by abstraction quality and the completeness of the underlying trajectory dataset. We propose a hybrid framework that integrates (1) explainability, (2) model checking, and (3) risk-guided falsification to achieve both rigor and coverage. Our approach begins by constructing a human-interpretable abstraction of the RL policy using Comprehensible Abstract Policy Summarization (CAPS). This abstract graph, derived from offline trajectories, is both verifier-friendly, semantically meaningful, and can be used as input to Storm probabilistic model checker to verify satisfaction of temporal safety specifications. If the model checker identifies a violation, it will return an interpretable counterexample trace by which the policy fails the safety requirement. However, if no violation is detected, we cannot conclude satisfaction due to potential limitation in the abstraction and coverage of the offline dataset. In such cases, we estimate associated risk during model checking to guide a falsification strategy that prioritizes searching in high-risk states and regions underrepresented in the trajectory dataset. We further provide PAC-style guarantees on the likelihood of uncovering undetected violations. Finally, we incorporate a lightweight safety shield that switches to a fallback policy at runtime when such a risk exceeds a threshold, facilitating failure mitigation without retraining.

View on arXiv
Comments on this paper