Autonomous driving (AD) relies heavily on high precision localization as a crucial part of all driving related software components. The precise positioning is necessary for the utilization of high-definition maps, prediction of other road participants and the controlling of the vehicle itself. Due to this reason, the localization is absolutely safety relevant. Typical errors of the localization systems, which are long term drifts, jumps and false localization, that must be detected to enhance safety. An online assessment and evaluation of the current localization performance is a challenging task, which is usually done by Kalman filtering for single localization systems. Current autonomous vehicles cope with these challenges by fusing multiple individual localization methods into an overall state estimation. Such approaches need expert knowledge for a competitive performance in challenging environments. This expert knowledge is based on the trust and the prioritization of distinct localization methods in respect to the current situation and environment.This work presents a novel online performance assessment technique of multiple localization systems by using subjective logic (SL). In our research vehicles, three different systems for localization are available, namely odometry-, Simultaneous Localization And Mapping (SLAM)- and Global Navigation Satellite System (GNSS)-based. Our performance assessment models the behavior of these three localization systems individually and puts them into reference of each other. The experiments were carried out using the CoCar NextGen, which is based on an Audi A6. The vehicle's localization system was evaluated under challenging conditions, specifically within a tunnel environment. The overall evaluation shows the feasibility of our approach.
View on arXiv@article{orf2025_2506.02932, title={ Online Performance Assessment of Multi-Source-Localization for Autonomous Driving Systems Using Subjective Logic }, author={ Stefan Orf and Sven Ochs and Marc René Zofka and J. Marius Zöllner }, journal={arXiv preprint arXiv:2506.02932}, year={ 2025 } }