ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.01353
150
0
v1v2 (latest)

EgoBrain: Synergizing Minds and Eyes For Human Action Understanding

2 June 2025
Nie Lin
Longji Xu
Dongqi Han
Weibang Jiang
Jingyuan Li
Ryosuke Furuta
Yoichi Sato
Dongsheng Li
    EgoV
ArXiv (abs)PDFHTML
Main:8 Pages
12 Figures
Bibliography:5 Pages
3 Tables
Appendix:9 Pages
Abstract

The integration of brain-computer interfaces (BCIs), in particular electroencephalography (EEG), with artificial intelligence (AI) has shown tremendous promise in decoding human cognition and behavior from neural signals. In particular, the rise of multimodal AI models have brought new possibilities that have never been imagined before. Here, we present EgoBrain --the world's first large-scale, temporally aligned multimodal dataset that synchronizes egocentric vision and EEG of human brain over extended periods of time, establishing a new paradigm for human-centered behavior analysis. This dataset comprises 61 hours of synchronized 32-channel EEG recordings and first-person video from 40 participants engaged in 29 categories of daily activities. We then developed a muiltimodal learning framework to fuse EEG and vision for action understanding, validated across both cross-subject and cross-environment challenges, achieving an action recognition accuracy of 66.70%. EgoBrain paves the way for a unified framework for brain-computer interface with multiple modalities. All data, tools, and acquisition protocols are openly shared to foster open science in cognitive computing.

View on arXiv
Comments on this paper