Retrieval-augmented generation (RAG) is usually integrated into large language models (LLMs) to mitigate hallucinations and knowledge obsolescence. Whereas,conventional one-step retrieve-and-read methods are insufficient for multi-hop question answering, facing challenges of retrieval semantic mismatching and the high cost in handling interdependent subquestions. In this paper, we propose Optimizing Question Semantic Space for Dynamic Retrieval-Augmented Multi-hop Question Answering (Q-DREAM). Q-DREAM consists of three key modules: (1) the Question Decomposition Module (QDM), which decomposes multi-hop questions into fine-grained subquestions; (2) the Subquestion Dependency Optimizer Module (SDOM), which models the interdependent relations of subquestions for better understanding; and (3) the Dynamic Passage Retrieval Module (DPRM), which aligns subquestions with relevant passages by optimizing the semantic embeddings. Experimental results across various benchmarks demonstrate that Q-DREAM significantly outperforms existing RAG methods, achieving state-of-the-art performance in both in-domain and out-of-domain settings. Notably, Q-DREAM also improves retrieval efficiency while maintaining high accuracy compared with recent baselines.
View on arXiv@article{ye2025_2506.00491, title={ Optimizing Question Semantic Space for Dynamic Retrieval-Augmented Multi-hop Question Answering }, author={ Linhao Ye and Lang Yu and Zhikai Lei and Qin Chen and Jie Zhou and Liang He }, journal={arXiv preprint arXiv:2506.00491}, year={ 2025 } }