This paper evaluates the performance of six open-weight LLMs (llama3-8b, llama3.1-8b, gemma2-9b, mixtral-8x7b, llama3-70b, llama3.1-70b) in recommending experts in physics across five tasks: top-k experts by field, influential scientists by discipline, epoch, seniority, and scholar counterparts. The evaluation examines consistency, factuality, and biases related to gender, ethnicity, academic popularity, and scholar similarity. Using ground-truth data from the American Physical Society and OpenAlex, we establish scholarly benchmarks by comparing model outputs to real-world academic records. Our analysis reveals inconsistencies and biases across all models. mixtral-8x7b produces the most stable outputs, while llama3.1-70b shows the highest variability. Many models exhibit duplication, and some, particularly gemma2-9b and llama3.1-8b, struggle with formatting errors. LLMs generally recommend real scientists, but accuracy drops in field-, epoch-, and seniority-specific queries, consistently favoring senior scholars. Representation biases persist, replicating gender imbalances (reflecting male predominance), under-representing Asian scientists, and over-representing White scholars. Despite some diversity in institutional and collaboration networks, models favor highly cited and productive scholars, reinforcing the rich-getricher effect while offering limited geographical representation. These findings highlight the need to improve LLMs for more reliable and equitable scholarly recommendations.
View on arXiv@article{barolo2025_2506.00074, title={ Whose Name Comes Up? Auditing LLM-Based Scholar Recommendations }, author={ Daniele Barolo and Chiara Valentin and Fariba Karimi and Luis Galárraga and Gonzalo G. Méndez and Lisette Espín-Noboa }, journal={arXiv preprint arXiv:2506.00074}, year={ 2025 } }