Large Language Models (LLMs) are increasingly shaping public discourse, yet their politico-economic biases remain underexamined in non-Western and low-resource multilingual contexts. This paper presents a systematic analysis of political bias in 13 state-of-the-art LLMs across five low-resource languages spoken in Pakistan: Urdu, Punjabi, Sindhi, Balochi, and Pashto. We propose a novel framework that integrates an adapted Political Compass Test (PCT) with a multi-level framing analysis. Our method combines quantitative assessment of political orientation across economic (left-right) and social (libertarian-authoritarian) axes with qualitative analysis of framing through content, style, and emphasis. We further contextualize this analysis by aligning prompts with 11 key socio-political themes relevant to Pakistani society. Our results reveal that LLMs predominantly align with liberal-left values, echoing Western training data influences, but exhibit notable shifts toward authoritarian framing in regional languages, suggesting strong cultural modulation effects. We also identify consistent model-specific bias signatures and language-conditioned variations in ideological expression. These findings show the urgent need for culturally grounded, multilingual bias auditing frameworks.
View on arXiv@article{nadeem2025_2506.00068, title={ Probing Politico-Economic Bias in Multilingual Large Language Models: A Cultural Analysis of Low-Resource Pakistani Languages }, author={ Afrozah Nadeem and Mark Dras and Usman Naseem }, journal={arXiv preprint arXiv:2506.00068}, year={ 2025 } }