5
0

SASP: Strip-Aware Spatial Perception for Fine-Grained Bird Image Classification

Abstract

Fine-grained bird image classification (FBIC) is not only of great significance for ecological monitoring and species identification, but also holds broad research value in the fields of image recognition and fine-grained visual modeling. Compared with general image classification tasks, FBIC poses more formidable challenges: 1) the differences in species size and imaging distance result in the varying sizes of birds presented in the images; 2) complex natural habitats often introduce strong background interference; 3) and highly flexible poses such as flying, perching, or foraging result in substantial intra-class variability. These factors collectively make it difficult for traditional methods to stably extract discriminative features, thereby limiting the generalizability and interpretability of models in real-world applications. To address these challenges, this paper proposes a fine-grained bird classification framework based on strip-aware spatial perception, which aims to capture long-range spatial dependencies across entire rows or columns in bird images, thereby enhancing the model's robustness and interpretability. The proposed method incorporates two novel modules: extensional perception aggregator (EPA) and channel semantic weaving (CSW). Specifically, EPA integrates local texture details with global structural cues by aggregating information across horizontal and vertical spatial directions. CSW further refines the semantic representations by adaptively fusing long-range and short-range information along the channel dimension. Built upon a ResNet-50 backbone, the model enables jump-wise connection of extended structural features across the spatial domain. Experimental results on the CUB-200-2011 dataset demonstrate that our framework achieves significant performance improvements while maintaining architectural efficiency.

View on arXiv
@article{wang2025_2505.24380,
  title={ SASP: Strip-Aware Spatial Perception for Fine-Grained Bird Image Classification },
  author={ Zheng Wang },
  journal={arXiv preprint arXiv:2505.24380},
  year={ 2025 }
}
Comments on this paper