19
0

Going from a Representative Agent to Counterfactuals in Combinatorial Choice

Abstract

We study decision-making problems where data comprises points from a collection of binary polytopes, capturing aggregate information stemming from various combinatorial selection environments. We propose a nonparametric approach for counterfactual inference in this setting based on a representative agent model, where the available data is viewed as arising from maximizing separable concave utility functions over the respective binary polytopes. Our first contribution is to precisely characterize the selection probabilities representable under this model and show that verifying the consistency of any given aggregated selection dataset reduces to solving a polynomial-sized linear program. Building on this characterization, we develop a nonparametric method for counterfactual prediction. When data is inconsistent with the model, finding a best-fitting approximation for prediction reduces to solving a compact mixed-integer convex program. Numerical experiments based on synthetic data demonstrate the method's flexibility, predictive accuracy, and strong representational power even under model misspecification.

View on arXiv
@article{ruan2025_2505.23546,
  title={ Going from a Representative Agent to Counterfactuals in Combinatorial Choice },
  author={ Yanqiu Ruan and Karthyek Murthy and Karthik Natarajan },
  journal={arXiv preprint arXiv:2505.23546},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.