Dynamic Spectral Backpropagation (DSBP) enhances neural network training under resource constraints by projecting gradients onto principal eigenvectors, reducing complexity and promoting flat minima. Five extensions are proposed, dynamic spectral inference, spectral architecture optimization, spectral meta learning, spectral transfer regularization, and Lie algebra inspired dynamics, to address challenges in robustness, fewshot learning, and hardware efficiency. Supported by a third order stochastic differential equation (SDE) and a PAC Bayes limit, DSBP outperforms Sharpness Aware Minimization (SAM), Low Rank Adaptation (LoRA), and Model Agnostic Meta Learning (MAML) on CIFAR 10, Fashion MNIST, MedMNIST, and Tiny ImageNet, as demonstrated through extensive experiments and visualizations. Future work focuses on scalability, bias mitigation, and ethical considerations.
View on arXiv@article{muthuraman2025_2505.23369, title={ Dynamic Spectral Backpropagation for Efficient Neural Network Training }, author={ Mannmohan Muthuraman }, journal={arXiv preprint arXiv:2505.23369}, year={ 2025 } }