Accelerating RLHF Training with Reward Variance Increase

Reinforcement learning from human feedback (RLHF) is an essential technique for ensuring that large language models (LLMs) are aligned with human values and preferences during the post-training phase. As an effective RLHF approach, group relative policy optimization (GRPO) has demonstrated success in many LLM-based applications. However, efficient GRPO-based RLHF training remains a challenge. Recent studies reveal that a higher reward variance of the initial policy model leads to faster RLHF training. Inspired by this finding, we propose a practical reward adjustment model to accelerate RLHF training by provably increasing the reward variance and preserving the relative preferences and reward expectation. Our reward adjustment method inherently poses a nonconvex optimization problem, which is NP-hard to solve in general. To overcome the computational challenges, we design a novel algorithm to find a global solution of the nonconvex reward adjustment model by explicitly characterizing the extreme points of the feasible set. As an important application, we naturally integrate this reward adjustment model into the GRPO algorithm, leading to a more efficient GRPO with reward variance increase (GRPOVI) algorithm for RLHF training. As an interesting byproduct, we provide an indirect explanation for the empirical effectiveness of GRPO with rule-based reward for RLHF training, as demonstrated in DeepSeek-R1. Experiment results demonstrate that the GRPOVI algorithm can significantly improve the RLHF training efficiency compared to the original GRPO algorithm.
View on arXiv@article{yang2025_2505.23247, title={ Accelerating RLHF Training with Reward Variance Increase }, author={ Zonglin Yang and Zhexuan Gu and Houduo Qi and Yancheng Yuan }, journal={arXiv preprint arXiv:2505.23247}, year={ 2025 } }