ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.19757
19
0

CIDRe: A Reference-Free Multi-Aspect Criterion for Code Comment Quality Measurement

26 May 2025
Maria Dziuba
Valentin Malykh
ArXiv (abs)PDFHTML
Main:3 Pages
5 Figures
Bibliography:2 Pages
4 Tables
Appendix:4 Pages
Abstract

Effective generation of structured code comments requires robust quality metrics for dataset curation, yet existing approaches (SIDE, MIDQ, STASIS) suffer from limited code-comment analysis. We propose CIDRe, a language-agnostic reference-free quality criterion combining four synergistic aspects: (1) relevance (code-comment semantic alignment), (2) informativeness (functional coverage), (3) completeness (presence of all structure sections), and (4) description length (detail sufficiency). We validate our criterion on a manually annotated dataset. Experiments demonstrate CIDRe's superiority over existing metrics, achieving improvement in cross-entropy evaluation. When applied to filter comments, the models finetuned on CIDRe-filtered data show statistically significant quality gains in GPT-4o-mini assessments.

View on arXiv
@article{dziuba2025_2505.19757,
  title={ CIDRe: A Reference-Free Multi-Aspect Criterion for Code Comment Quality Measurement },
  author={ Maria Dziuba and Valentin Malykh },
  journal={arXiv preprint arXiv:2505.19757},
  year={ 2025 }
}
Comments on this paper