Recent text-to-image (T2I) generation models have advanced significantly, enabling the creation of high-fidelity images from textual prompts. However, existing evaluation benchmarks primarily focus on the explicit alignment between generated images and prompts, neglecting the alignment with real-world knowledge beyond prompts. To address this gap, we introduce Align Beyond Prompts (ABP), a comprehensive benchmark designed to measure the alignment of generated images with real-world knowledge that extends beyond the explicit user prompts. ABP comprises over 2,000 meticulously crafted prompts, covering real-world knowledge across six distinct scenarios. We further introduce ABPScore, a metric that utilizes existing Multimodal Large Language Models (MLLMs) to assess the alignment between generated images and world knowledge beyond prompts, which demonstrates strong correlations with human judgments. Through a comprehensive evaluation of 8 popular T2I models using ABP, we find that even state-of-the-art models, such as GPT-4o, face limitations in integrating simple real-world knowledge into generated images. To mitigate this issue, we introduce a training-free strategy within ABP, named Inference-Time Knowledge Injection (ITKI). By applying this strategy to optimize 200 challenging samples, we achieved an improvement of approximately 43% in ABPScore. The dataset and code are available inthis https URL.
View on arXiv@article{zhang2025_2505.18730, title={ Align Beyond Prompts: Evaluating World Knowledge Alignment in Text-to-Image Generation }, author={ Wenchao Zhang and Jiahe Tian and Runze He and Jizhong Han and Jiao Dai and Miaomiao Feng and Wei Mi and Xiaodan Zhang }, journal={arXiv preprint arXiv:2505.18730}, year={ 2025 } }