89
0

Multi-Scale Probabilistic Generation Theory: A Hierarchical Framework for Interpreting Large Language Models

Main:7 Pages
10 Figures
Bibliography:4 Pages
11 Tables
Appendix:13 Pages
Abstract

Large Transformer based language models achieve remarkable performance but remain opaque in how they plan, structure, and realize text. We introduce Multi_Scale Probabilistic Generation Theory (MSPGT), a hierarchical framework that factorizes generation into three semantic scales_global context, intermediate structure, and local word choices and aligns each scale with specific layer ranges in Transformer architectures. To identify scale boundaries, we propose two complementary metrics: attention span thresholds and inter layer mutual information peaks. Across four representative models (GPT-2, BERT, RoBERTa, and T5), these metrics yield stable local/intermediate/global partitions, corroborated by probing tasks and causal interventions. We find that decoder_only models allocate more layers to intermediate and global processing while encoder_only models emphasize local feature extraction. Through targeted interventions, we demonstrate that local scale manipulations primarily influence lexical diversity, intermediate-scale modifications affect sentence structure and length, and global_scale perturbations impact discourse coherence all with statistically significant effects. MSPGT thus offers a unified, architecture-agnostic method for interpreting, diagnosing, and controlling large language models, bridging the gap between mechanistic interpretability and emergent capabilities.

View on arXiv
@article{zhang2025_2505.18244,
  title={ Multi-Scale Probabilistic Generation Theory: A Hierarchical Framework for Interpreting Large Language Models },
  author={ Yukin Zhang and Qi Dong },
  journal={arXiv preprint arXiv:2505.18244},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.