Audio-to-Audio Emotion Conversion With Pitch And Duration Style Transfer

Given a pair of source and reference speech recordings, audio-to-audio (A2A) style transfer involves the generation of an output speech that mimics the style characteristics of the reference while preserving the content and speaker attributes of the source. In this paper, we propose a novel framework, termed as A2A Zero-shot Emotion Style Transfer (A2A-ZEST), that enables the transfer of reference emotional attributes to the source while retaining its speaker and speech contents. The A2A-ZEST framework consists of an analysis-synthesis pipeline, where the analysis module decomposes speech into semantic tokens, speaker representations, and emotion embeddings. Using these representations, a pitch contour estimator and a duration predictor are learned. Further, a synthesis module is designed to generate speech based on the input representations and the derived factors. This entire paradigm of analysis-synthesis is trained purely in a self-supervised manner with an auto-encoding loss. For A2A emotion style transfer, the emotion embedding extracted from the reference speech along with the rest of the representations from the source speech are used in the synthesis module to generate the style translated speech. In our experiments, we evaluate the converted speech on content/speaker preservation (w.r.t. source) as well as on the effectiveness of the emotion style transfer (w.r.t. reference). The proposal, A2A-ZEST, is shown to improve over other prior works on these evaluations, thereby enabling style transfer without any parallel training data. We also illustrate the application of the proposed work for data augmentation in emotion recognition tasks.
View on arXiv@article{dutta2025_2505.17655, title={ Audio-to-Audio Emotion Conversion With Pitch And Duration Style Transfer }, author={ Soumya Dutta and Avni Jain and Sriram Ganapathy }, journal={arXiv preprint arXiv:2505.17655}, year={ 2025 } }