31
0

Discovering Forbidden Topics in Language Models

Abstract

Refusal discovery is the task of identifying the full set of topics that a language model refuses to discuss. We introduce this new problem setting and develop a refusal discovery method, LLM-crawler, that uses token prefilling to find forbidden topics. We benchmark the LLM-crawler on Tulu-3-8B, an open-source model with public safety tuning data. Our crawler manages to retrieve 31 out of 36 topics within a budget of 1000 prompts. Next, we scale the crawl to a frontier model using the prefilling option of Claude-Haiku. Finally, we crawl three widely used open-weight models: Llama-3.3-70B and two of its variants finetuned for reasoning: DeepSeek-R1-70B and Perplexity-R1-1776-70B. DeepSeek-R1-70B reveals patterns consistent with censorship tuning: The model exhibits "thought suppression" behavior that indicates memorization of CCP-aligned responses. Although Perplexity-R1-1776-70B is robust to censorship, LLM-crawler elicits CCP-aligned refusals answers in the quantized model. Our findings highlight the critical need for refusal discovery methods to detect biases, boundaries, and alignment failures of AI systems.

View on arXiv
@article{rager2025_2505.17441,
  title={ Discovering Forbidden Topics in Language Models },
  author={ Can Rager and Chris Wendler and Rohit Gandikota and David Bau },
  journal={arXiv preprint arXiv:2505.17441},
  year={ 2025 }
}
Comments on this paper