ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.16215
25
0

A Scalable Hierarchical Intrusion Detection System for Internet of Vehicles

22 May 2025
Md Ashraf Uddin
Nam H. Chu
Reza Rafeh
Mutaz Barika
ArXiv (abs)PDFHTML
Main:13 Pages
12 Figures
Bibliography:2 Pages
7 Tables
Abstract

Due to its nature of dynamic, mobility, and wireless data transfer, the Internet of Vehicles (IoV) is prone to various cyber threats, ranging from spoofing and Distributed Denial of Services (DDoS) attacks to malware. To safeguard the IoV ecosystem from intrusions, malicious activities, policy violations, intrusion detection systems (IDS) play a critical role by continuously monitoring and analyzing network traffic to identify and mitigate potential threats in real-time. However, most existing research has focused on developing centralized, machine learning-based IDS systems for IoV without accounting for its inherently distributed nature. Due to intensive computing requirements, these centralized systems often rely on the cloud to detect cyber threats, increasing delay of system response. On the other hand, edge nodes typically lack the necessary resources to train and deploy complex machine learning algorithms. To address this issue, this paper proposes an effective hierarchical classification framework tailored for IoV networks. Hierarchical classification allows classifiers to be trained and tested at different levels, enabling edge nodes to detect specific types of attacks independently. With this approach, edge nodes can conduct targeted attack detection while leveraging cloud nodes for comprehensive threat analysis and support. Given the resource constraints of edge nodes, we have employed the Boruta feature selection method to reduce data dimensionality, optimizing processing efficiency. To evaluate our proposed framework, we utilize the latest IoV security dataset CIC-IoV2024, achieving promising results that demonstrate the feasibility and effectiveness of our models in securing IoV networks.

View on arXiv
@article{uddin2025_2505.16215,
  title={ A Scalable Hierarchical Intrusion Detection System for Internet of Vehicles },
  author={ Md Ashraf Uddin and Nam H. Chu and Reza Rafeh and Mutaz Barika },
  journal={arXiv preprint arXiv:2505.16215},
  year={ 2025 }
}
Comments on this paper