This Time is Different: An Observability Perspective on Time Series Foundation Models

We introduce Toto, a time series forecasting foundation model with 151 million parameters. Toto uses a modern decoder-only architecture coupled with architectural innovations designed to account for specific challenges found in multivariate observability time series data. Toto's pre-training corpus is a mixture of observability data, open datasets, and synthetic data, and is 4-10 larger than those of leading time series foundation models. Additionally, we introduce BOOM, a large-scale benchmark consisting of 350 million observations across 2,807 real-world time series. For both Toto and BOOM, we source observability data exclusively from Datadog's own telemetry and internal observability metrics. Extensive evaluations demonstrate that Toto achieves state-of-the-art performance on both BOOM and on established general purpose time series forecasting benchmarks. Toto's model weights, inference code, and evaluation scripts, as well as BOOM's data and evaluation code, are all available as open source under the Apache 2.0 License available atthis https URLandthis https URL.
View on arXiv@article{cohen2025_2505.14766, title={ This Time is Different: An Observability Perspective on Time Series Foundation Models }, author={ Ben Cohen and Emaad Khwaja and Youssef Doubli and Salahidine Lemaachi and Chris Lettieri and Charles Masson and Hugo Miccinilli and Elise Ramé and Qiqi Ren and Afshin Rostamizadeh and Jean Ogier du Terrail and Anna-Monica Toon and Kan Wang and Stephan Xie and David Asker and Ameet Talwalkar and Othmane Abou-Amal }, journal={arXiv preprint arXiv:2505.14766}, year={ 2025 } }