ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.14033
7
0

Partition-wise Graph Filtering: A Unified Perspective Through the Lens of Graph Coarsening

20 May 2025
Guoming Li
Jian Yang
Yifan Chen
ArXivPDFHTML
Abstract

Filtering-based graph neural networks (GNNs) constitute a distinct class of GNNs that employ graph filters to handle graph-structured data, achieving notable success in various graph-related tasks. Conventional methods adopt a graph-wise filtering paradigm, imposing a uniform filter across all nodes, yet recent findings suggest that this rigid paradigm struggles with heterophilic graphs. To overcome this, recent works have introduced node-wise filtering, which assigns distinct filters to individual nodes, offering enhanced adaptability. However, a fundamental gap remains: a comprehensive framework unifying these two strategies is still absent, limiting theoretical insights into the filtering paradigms. Moreover, through the lens of Contextual Stochastic Block Model, we reveal that a synthesis of graph-wise and node-wise filtering provides a sufficient solution for classification on graphs exhibiting both homophily and heterophily, suggesting the risk of excessive parameterization and potential overfitting with node-wise filtering. To address the limitations, this paper introduces Coarsening-guided Partition-wise Filtering (CPF). CPF innovates by performing filtering on node partitions. The method begins with structure-aware partition-wise filtering, which filters node partitions obtained via graph coarsening algorithms, and then performs feature-aware partition-wise filtering, refining node embeddings via filtering on clusters produced by kkk-means clustering over features. In-depth analysis is conducted for each phase of CPF, showing its superiority over other paradigms. Finally, benchmark node classification experiments, along with a real-world graph anomaly detection application, validate CPF's efficacy and practical utility.

View on arXiv
@article{li2025_2505.14033,
  title={ Partition-wise Graph Filtering: A Unified Perspective Through the Lens of Graph Coarsening },
  author={ Guoming Li and Jian Yang and Yifan Chen },
  journal={arXiv preprint arXiv:2505.14033},
  year={ 2025 }
}
Comments on this paper