12
0

Enhancing LLMs for Time Series Forecasting via Structure-Guided Cross-Modal Alignment

Abstract

The emerging paradigm of leveraging pretrained large language models (LLMs) for time series forecasting has predominantly employed linguistic-temporal modality alignment strategies through token-level or layer-wise feature mapping. However, these approaches fundamentally neglect a critical insight: the core competency of LLMs resides not merely in processing localized token features but in their inherent capacity to model holistic sequence structures. This paper posits that effective cross-modal alignment necessitates structural consistency at the sequence level. We propose the Structure-Guided Cross-Modal Alignment (SGCMA), a framework that fully exploits and aligns the state-transition graph structures shared by time-series and linguistic data as sequential modalities, thereby endowing time series with language-like properties and delivering stronger generalization after modality alignment. SGCMA consists of two key components, namely Structure Alignment and Semantic Alignment. In Structure Alignment, a state transition matrix is learned from text data through Hidden Markov Models (HMMs), and a shallow transformer-based Maximum Entropy Markov Model (MEMM) receives the hot-start transition matrix and annotates each temporal patch into state probability, ensuring that the temporal representation sequence inherits language-like sequential dynamics. In Semantic Alignment, cross-attention is applied between temporal patches and the top-k tokens within each state, and the ultimate temporal embeddings are derived by the expected value of these embeddings using a weighted average based on state probabilities. Experiments on multiple benchmarks demonstrate that SGCMA achieves state-of-the-art performance, offering a novel approach to cross-modal alignment in time series forecasting.

View on arXiv
@article{sun2025_2505.13175,
  title={ Enhancing LLMs for Time Series Forecasting via Structure-Guided Cross-Modal Alignment },
  author={ Siming Sun and Kai Zhang and Xuejun Jiang and Wenchao Meng and Qinmin Yang },
  journal={arXiv preprint arXiv:2505.13175},
  year={ 2025 }
}
Comments on this paper