22
0

ESC-Judge: A Framework for Comparing Emotional Support Conversational Agents

Abstract

Large language models (LLMs) increasingly power mental-health chatbots, yet the field still lacks a scalable, theory-grounded way to decide which model is most effective to deploy. We present ESC-Judge, the first end-to-end evaluation framework that (i) grounds head-to-head comparisons of emotional-support LLMs in Clara Hill's established Exploration-Insight-Action counseling model, providing a structured and interpretable view of performance, and (ii) fully automates the evaluation pipeline at scale. ESC-Judge operates in three stages: first, it synthesizes realistic help-seeker roles by sampling empirically salient attributes such as stressors, personality, and life history; second, it has two candidate support agents conduct separate sessions with the same role, isolating model-specific strategies; and third, it asks a specialized judge LLM to express pairwise preferences across rubric-anchored skills that span the Exploration, Insight, and Action spectrum. In our study, ESC-Judge matched PhD-level annotators on 85 percent of Exploration, 83 percent of Insight, and 86 percent of Action decisions, demonstrating human-level reliability at a fraction of the cost. All code, prompts, synthetic roles, transcripts, and judgment scripts are released to promote transparent progress in emotionally supportive AI.

View on arXiv
@article{madani2025_2505.12531,
  title={ ESC-Judge: A Framework for Comparing Emotional Support Conversational Agents },
  author={ Navid Madani and Rohini Srihari },
  journal={arXiv preprint arXiv:2505.12531},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.