CLT and Edgeworth Expansion for m-out-of-n Bootstrap Estimators of The Studentized Median

The m-out-of-n bootstrap, originally proposed by Bickel, Gotze, and Zwet (1992), approximates the distribution of a statistic by repeatedly drawing m subsamples (with m much smaller than n) without replacement from an original sample of size n. It is now routinely used for robust inference with heavy-tailed data, bandwidth selection, and other large-sample applications. Despite its broad applicability across econometrics, biostatistics, and machine learning, rigorous parameter-free guarantees for the soundness of the m-out-of-n bootstrap when estimating sample quantiles have remained elusive.This paper establishes such guarantees by analyzing the estimator of sample quantiles obtained from m-out-of-n resampling of a dataset of size n. We first prove a central limit theorem for a fully data-driven version of the estimator that holds under a mild moment condition and involves no unknown nuisance parameters. We then show that the moment assumption is essentially tight by constructing a counter-example in which the CLT fails. Strengthening the assumptions slightly, we derive an Edgeworth expansion that provides exact convergence rates and, as a corollary, a Berry Esseen bound on the bootstrap approximation error. Finally, we illustrate the scope of our results by deriving parameter-free asymptotic distributions for practical statistics, including the quantiles for random walk Metropolis-Hastings and the rewards of ergodic Markov decision processes, thereby demonstrating the usefulness of our theory in modern estimation and learning tasks.
View on arXiv@article{banerjee2025_2505.11725, title={ CLT and Edgeworth Expansion for m-out-of-n Bootstrap Estimators of The Studentized Median }, author={ Imon Banerjee and Sayak Chakrabarty }, journal={arXiv preprint arXiv:2505.11725}, year={ 2025 } }