ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.11719
2
0

Zero-Shot Visual Generalization in Robot Manipulation

16 May 2025
Sumeet Batra
Gaurav Sukhatme
ArXivPDFHTML
Abstract

Training vision-based manipulation policies that are robust across diverse visual environments remains an important and unresolved challenge in robot learning. Current approaches often sidestep the problem by relying on invariant representations such as point clouds and depth, or by brute-forcing generalization through visual domain randomization and/or large, visually diverse datasets. Disentangled representation learning - especially when combined with principles of associative memory - has recently shown promise in enabling vision-based reinforcement learning policies to be robust to visual distribution shifts. However, these techniques have largely been constrained to simpler benchmarks and toy environments. In this work, we scale disentangled representation learning and associative memory to more visually and dynamically complex manipulation tasks and demonstrate zero-shot adaptability to visual perturbations in both simulation and on real hardware. We further extend this approach to imitation learning, specifically Diffusion Policy, and empirically show significant gains in visual generalization compared to state-of-the-art imitation learning methods. Finally, we introduce a novel technique adapted from the model equivariance literature that transforms any trained neural network policy into one invariant to 2D planar rotations, making our policy not only visually robust but also resilient to certain camera perturbations. We believe that this work marks a significant step towards manipulation policies that are not only adaptable out of the box, but also robust to the complexities and dynamical nature of real-world deployment. Supplementary videos are available atthis https URL.

View on arXiv
@article{batra2025_2505.11719,
  title={ Zero-Shot Visual Generalization in Robot Manipulation },
  author={ Sumeet Batra and Gaurav Sukhatme },
  journal={arXiv preprint arXiv:2505.11719},
  year={ 2025 }
}
Comments on this paper