Ambiguity Resolution in Text-to-Structured Data Mapping

Ambiguity in natural language is a significant obstacle for achieving accurate text to structured data mapping through large language models (LLMs), which affects the performance of tasks such as mapping text to agentic tool calling and text-to-SQL queries. Existing methods of ambiguity handling either exploit ReACT framework to produce the correct mapping through trial and error, or supervised fine tuning to guide models to produce a biased mapping to improve certain tasks. In this paper, we adopt a different approach that characterizes the representation difference of ambiguous text in the latent space and leverage the difference to identify ambiguity before mapping them to structured data. To detect ambiguity of a sentence, we focused on the relationship between ambiguous questions and their interpretations and what cause the LLM ignore multiple interpretations. Different to the distance calculated by dense embedding vectors, we utilize the observation that ambiguity is caused by concept missing in latent space of LLM to design a new distance measurement, computed through the path kernel by the integral of gradient values for each concepts from sparse-autoencoder (SAE) under each state. We identify patterns to distinguish ambiguous questions with this measurement. Based on our observation, We propose a new framework to improve the performance of LLMs on ambiguous agentic tool calling through missing concepts prediction.
View on arXiv@article{hu2025_2505.11679, title={ Ambiguity Resolution in Text-to-Structured Data Mapping }, author={ Zhibo Hu and Chen Wang and Yanfeng Shu and Hye-Young Paik and Liming Zhu }, journal={arXiv preprint arXiv:2505.11679}, year={ 2025 } }