ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.11261
12
0

Fourier Low-rank and Sparse Tensor for Efficient Tensor Completion

16 May 2025
Jingyang Li
Jiuqian Shang
Yang Chen
ArXivPDFHTML
Abstract

Tensor completion is crucial in many scientific domains with missing data problems. Traditional low-rank tensor models, including CP, Tucker, and Tensor-Train, exploit low-dimensional structures to recover missing data. However, these methods often treat all tensor modes symmetrically, failing to capture the unique spatiotemporal patterns inherent in scientific data, where the temporal component exhibits both low-frequency stability and high-frequency variations. To address this, we propose a novel model, \underline{F}ourier \underline{Lo}w-rank and \underline{S}parse \underline{T}ensor (FLoST), which decomposes the tensor along the temporal dimension using a Fourier transform. This approach captures low-frequency components with low-rank matrices and high-frequency fluctuations with sparsity, resulting in a hybrid structure that efficiently models both smooth and localized variations. Compared to the well-known tubal-rank model, which assumes low-rankness across all frequency components, FLoST requires significantly fewer parameters, making it computationally more efficient, particularly when the time dimension is large. Through theoretical analysis and empirical experiments, we demonstrate that FLoST outperforms existing tensor completion models in terms of both accuracy and computational efficiency, offering a more interpretable solution for spatiotemporal data reconstruction.

View on arXiv
@article{li2025_2505.11261,
  title={ Fourier Low-rank and Sparse Tensor for Efficient Tensor Completion },
  author={ Jingyang Li and Jiuqian Shang and Yang Chen },
  journal={arXiv preprint arXiv:2505.11261},
  year={ 2025 }
}
Comments on this paper