ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.11183
12
0

On Next-Token Prediction in LLMs: How End Goals Determine the Consistency of Decoding Algorithms

16 May 2025
Jacob Trauger
Ambuj Tewari
ArXivPDFHTML
Abstract

Probabilistic next-token prediction trained using cross-entropy loss is the basis of most large language models. Given a sequence of previous values, next-token prediction assigns a probability to each possible next value in the vocabulary. There are many ways to use next-token prediction to output token sequences. This paper examines a few of these algorithms (greedy, lookahead, random sampling, and temperature-scaled random sampling) and studies their consistency with respect to various goals encoded as loss functions. Although consistency of surrogate losses with respect to a target loss function is a well researched topic, we are the first to study it in the context of LLMs (to the best of our knowledge). We find that, so long as next-token prediction converges to its true probability distribution, random sampling is consistent with outputting sequences that mimic sampling from the true probability distribution. For the other goals, such as minimizing the 0-1 loss on the entire sequence, we show no polynomial-time algorithm is optimal for all probability distributions and all decoding algorithms studied are only optimal for a subset of probability distributions. When analyzing these results, we see that there is a dichotomy created between the goals of information retrieval and creative generation for the decoding algorithms. This shows that choosing the correct decoding algorithm based on the desired goal is extremely important and many of the ones used are lacking theoretical grounding in numerous scenarios.

View on arXiv
@article{trauger2025_2505.11183,
  title={ On Next-Token Prediction in LLMs: How End Goals Determine the Consistency of Decoding Algorithms },
  author={ Jacob Trauger and Ambuj Tewari },
  journal={arXiv preprint arXiv:2505.11183},
  year={ 2025 }
}
Comments on this paper