Legged robots are well-suited for navigating terrains inaccessible to wheeled robots, making them ideal for applications in search and rescue or space exploration. However, current control methods often struggle to generalize across diverse, unstructured environments. This paper introduces a novel framework for agile locomotion of legged robots by combining multi-expert distillation with reinforcement learning (RL) fine-tuning to achieve robust generalization. Initially, terrain-specific expert policies are trained to develop specialized locomotion skills. These policies are then distilled into a unified foundation policy via the DAgger algorithm. The distilled policy is subsequently fine-tuned using RL on a broader terrain set, including real-world 3D scans. The framework allows further adaptation to new terrains through repeated fine-tuning. The proposed policy leverages depth images as exteroceptive inputs, enabling robust navigation across diverse, unstructured terrains. Experimental results demonstrate significant performance improvements over existing methods in synthesizing multi-terrain skills into a single controller. Deployment on the ANYmal D robot validates the policy's ability to navigate complex environments with agility and robustness, setting a new benchmark for legged robot locomotion.
View on arXiv@article{rudin2025_2505.11164, title={ Parkour in the Wild: Learning a General and Extensible Agile Locomotion Policy Using Multi-expert Distillation and RL Fine-tuning }, author={ Nikita Rudin and Junzhe He and Joshua Aurand and Marco Hutter }, journal={arXiv preprint arXiv:2505.11164}, year={ 2025 } }