24
0

Improving Failure Prediction in Aircraft Fastener Assembly Using Synthetic Data in Imbalanced Datasets

Abstract

Automating aircraft manufacturing still relies heavily on human labor due to the complexity of the assembly processes and customization requirements. One key challenge is achieving precise positioning, especially for large aircraft structures, where errors can lead to substantial maintenance costs or part rejection. Existing solutions often require costly hardware or lack flexibility. Used in aircraft by the thousands, threaded fasteners, e.g., screws, bolts, and collars, are traditionally executed by fixed-base robots and usually have problems in being deployed in the mentioned manufacturing sites. This paper emphasizes the importance of error detection and classification for efficient and safe assembly of threaded fasteners, especially aeronautical collars. Safe assembly of threaded fasteners is paramount since acquiring sufficient data for training deep learning models poses challenges due to the rarity of failure cases and imbalanced datasets. The paper addresses this by proposing techniques like class weighting and data augmentation, specifically tailored for temporal series data, to improve classification performance. Furthermore, the paper introduces a novel problem-modeling approach, emphasizing metrics relevant to collar assembly rather than solely focusing on accuracy. This tailored approach enhances the models' capability to handle the challenges of threaded fastener assembly effectively.

View on arXiv
@article{lahr2025_2505.03917,
  title={ Improving Failure Prediction in Aircraft Fastener Assembly Using Synthetic Data in Imbalanced Datasets },
  author={ Gustavo J. G. Lahr and Ricardo V. Godoy and Thiago H. Segreto and Jose O. Savazzi and Arash Ajoudani and Thiago Boaventura and Glauco A. P. Caurin },
  journal={arXiv preprint arXiv:2505.03917},
  year={ 2025 }
}
Comments on this paper