81
0

Sentiment-Aware Recommendation Systems in E-Commerce: A Review from a Natural Language Processing Perspective

Main:12 Pages
1 Figures
3 Tables
Abstract

E-commerce platforms generate vast volumes of user feedback, such as star ratings, written reviews, and comments. However, most recommendation engines rely primarily on numerical scores, often overlooking the nuanced opinions embedded in free text. This paper comprehensively reviews sentiment-aware recommendation systems from a natural language processing perspective, covering advancements from 2023 to early 2025. It highlights the benefits of integrating sentiment analysis into e-commerce recommenders to enhance prediction accuracy and explainability through detailed opinion extraction. Our survey categorizes recent work into four main approaches: deep learning classifiers that combine sentiment embeddings with user item interactions, transformer based methods for nuanced feature extraction, graph neural networks that propagate sentiment signals, and conversational recommenders that adapt in real time to user feedback. We summarize model architectures and demonstrate how sentiment flows through recommendation pipelines, impacting dialogue-based suggestions. Key challenges include handling noisy or sarcastic text, dynamic user preferences, and bias mitigation. Finally, we outline research gaps and provide a roadmap for developing smarter, fairer, and more user-centric recommendation tools.

View on arXiv
@article{gajula2025_2505.03828,
  title={ Sentiment-Aware Recommendation Systems in E-Commerce: A Review from a Natural Language Processing Perspective },
  author={ Yogesh Gajula },
  journal={arXiv preprint arXiv:2505.03828},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.