46
0

A Domain Adaptation of Large Language Models for Classifying Mechanical Assembly Components

Main:7 Pages
10 Figures
Bibliography:2 Pages
6 Tables
Appendix:1 Pages
Abstract

The conceptual design phase represents a critical early stage in the product development process, where designers generate potential solutions that meet predefined design specifications based on functional requirements. Functional modeling, a foundational aspect of this phase, enables designers to reason about product functions before specific structural details are determined. A widely adopted approach to functional modeling is the Function-Behavior-Structure (FBS) framework, which supports the transformation of functional intent into behavioral and structural descriptions. However, the effectiveness of function-based design is often hindered by the lack of well-structured and comprehensive functional data. This scarcity can negatively impact early design decision-making and hinder the development of accurate behavioral models. Recent advances in Large Language Models (LLMs), such as those based on GPT architectures, offer a promising avenue to address this gap. LLMs have demonstrated significant capabilities in language understanding and natural language processing (NLP), making them suitable for automated classification tasks. This study proposes a novel LLM-based domain adaptation (DA) framework using fine-tuning for the automated classification of mechanical assembly parts' functions. By fine-tuning LLMs on domain-specific datasets, the traditionally manual and subjective process of function annotation can be improved in both accuracy and consistency. A case study demonstrates fine-tuning GPT-3.5 Turbo on data from the Oregon State Design Repository (OSDR), and evaluation on the A Big CAD (ABC) dataset shows that the domain-adapted LLM can generate high-quality functional data, enhancing the semantic representation of mechanical parts and supporting more effective design exploration in early-phase engineering.

View on arXiv
@article{elhambakhsh2025_2505.01627,
  title={ A Domain Adaptation of Large Language Models for Classifying Mechanical Assembly Components },
  author={ Fatemeh Elhambakhsh and Daniele Grandi and Hyunwoong Ko },
  journal={arXiv preprint arXiv:2505.01627},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.