74
0
v1v2v3 (latest)

A First Runtime Analysis of NSGA-III on a Many-Objective Multimodal Problem: Provable Exponential Speedup via Stochastic Population Update

Main:8 Pages
1 Figures
Bibliography:3 Pages
Abstract

The NSGA-III is a prominent algorithm in evolutionary many-objective optimization. It is well-suited for optimizing functions with more than three objectives, setting it apart from the classic NSGA-II. However, theoretical insights about NSGA-III of when and why it performs well are still in its early development. This paper addresses this point and conducts a rigorous runtime analysis of NSGA-III on the many-objective \OJZJfull\OJZJfull benchmark (\OJZJ\OJZJ for short), providing runtime bounds where the number of objectives is constant. We show that NSGA-III finds the Pareto front of \OJZJ\OJZJ in time O(nk+d/2+μnln(n))O(n^{k+d/2}+ \mu n \ln(n)) where nn is the problem size, dd is the number of objectives, kk is the gap size, a problem specific parameter, if its population size μ2O(n)\mu \in 2^{O(n)} is at least (2n/d+1)d/2(2n/d+1)^{d/2}. Notably, NSGA-III is faster than NSGA-II by a factor of μ/nd/2\mu/n^{d/2} for some μω(nd/2)\mu \in \omega(n^{d/2}). We also show that a stochastic population update, proposed by~\citet{UpBian}, provably guarantees a speedup of order Θ((k/b)k1)\Theta((k/b)^{k-1}) in the runtime where b>0b>0 is a constant. Besides~\cite{DoerrNearTight}, this is the first rigorous runtime analysis of NSGA-III on \OJZJ. Proving these bounds requires a much deeper understanding of the population dynamics of NSGA-III than previous papers achieved.

View on arXiv
@article{opris2025_2505.01256,
  title={ A First Runtime Analysis of NSGA-III on a Many-Objective Multimodal Problem: Provable Exponential Speedup via Stochastic Population Update },
  author={ Andre Opris },
  journal={arXiv preprint arXiv:2505.01256},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.