ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.00913
161
0

Fine-Tuning without Performance Degradation

1 May 2025
Han Wang
Adam White
Martha White
    OnRL
ArXivPDFHTML
Abstract

Fine-tuning policies learned offline remains a major challenge in application domains. Monotonic performance improvement during \emph{fine-tuning} is often challenging, as agents typically experience performance degradation at the early fine-tuning stage. The community has identified multiple difficulties in fine-tuning a learned network online, however, the majority of progress has focused on improving learning efficiency during fine-tuning. In practice, this comes at a serious cost during fine-tuning: initially, agent performance degrades as the agent explores and effectively overrides the policy learned offline. We show across a range of settings, many offline-to-online algorithms exhibit either (1) performance degradation or (2) slow learning (sometimes effectively no improvement) during fine-tuning. We introduce a new fine-tuning algorithm, based on an algorithm called Jump Start, that gradually allows more exploration based on online estimates of performance. Empirically, this approach achieves fast fine-tuning and significantly reduces performance degradations compared with existing algorithms designed to do the same.

View on arXiv
@article{wang2025_2505.00913,
  title={ Fine-Tuning without Performance Degradation },
  author={ Han Wang and Adam White and Martha White },
  journal={arXiv preprint arXiv:2505.00913},
  year={ 2025 }
}
Comments on this paper