We show how oracles which only allow for classical query access can be used to construct a variety of quantum cryptographic primitives which do not require long-term quantum memory or global entanglement. Specifically, if a quantum party can execute a semi-quantum token scheme (Shmueli 2022) with probability of success , we can build powerful cryptographic primitives with a multiplicative logarithmic overhead for the desired correctness error. Our scheme makes no assumptions about the quantum party's noise model except for a simple independence requirement: noise on two sets of non-entangled hardware must be independent.Using semi-quantum tokens and oracles which can only be queried classically, we first show how to construct a "short-lived" semi-quantum one-time program (OTP) which allows a classical sending party to prepare a one-time program on the receiving party's quantum computer. We then show how to use this semi-quantum OTP to construct a semi-quantum "stateful obfuscation" scheme (which we term "RAM obfuscation"). Importantly, the RAM obfuscation scheme does not require long-term quantum memory or global entanglement. Finally, we show how RAM obfuscation can be used to build long-lived one-time programs and copy-protection schemes.
View on arXiv@article{stambler2025_2504.21842, title={ Cryptography without Long-Term Quantum Memory and Global Entanglement: Classical Setups for One-Time Programs, Copy Protection, and Stateful Obfuscation }, author={ Lev Stambler }, journal={arXiv preprint arXiv:2504.21842}, year={ 2025 } }