0
0

Leveraging LLM to Strengthen ML-Based Cross-Site Scripting Detection

Dennis Miczek
Divyesh Gabbireddy
Suman Saha
Abstract

According to the Open Web Application Security Project (OWASP), Cross-Site Scripting (XSS) is a critical security vulnerability. Despite decades of research, XSS remains among the top 10 security vulnerabilities. Researchers have proposed various techniques to protect systems from XSS attacks, with machine learning (ML) being one of the most widely used methods. An ML model is trained on a dataset to identify potential XSS threats, making its effectiveness highly dependent on the size and diversity of the training data. A variation of XSS is obfuscated XSS, where attackers apply obfuscation techniques to alter the code's structure, making it challenging for security systems to detect its malicious intent. Our study's random forest model was trained on traditional (non-obfuscated) XSS data achieved 99.8% accuracy. However, when tested against obfuscated XSS samples, accuracy dropped to 81.9%, underscoring the importance of training ML models with obfuscated data to improve their effectiveness in detecting XSS attacks. A significant challenge is to generate highly complex obfuscated code despite the availability of several public tools. These tools can only produce obfuscation up to certain levels of complexity.In our proposed system, we fine-tune a Large Language Model (LLM) to generate complex obfuscated XSS payloads automatically. By transforming original XSS samples into diverse obfuscated variants, we create challenging training data for ML model evaluation. Our approach achieved a 99.5% accuracy rate with the obfuscated dataset. We also found that the obfuscated samples generated by the LLMs were 28.1% more complex than those created by other tools, significantly improving the model's ability to handle advanced XSS attacks and making it more effective for real-world application security.

View on arXiv
@article{miczek2025_2504.21045,
  title={ Leveraging LLM to Strengthen ML-Based Cross-Site Scripting Detection },
  author={ Dennis Miczek and Divyesh Gabbireddy and Suman Saha },
  journal={arXiv preprint arXiv:2504.21045},
  year={ 2025 }
}
Comments on this paper