In recent years, graph neural networks (GNNs) have shown great potential in addressing various graph structure-related downstream tasks. However, recent studies have found that current GNNs are susceptible to malicious adversarial attacks. Given the inevitable presence of adversarial attacks in the real world, a variety of defense methods have been proposed to counter these attacks and enhance the robustness of GNNs. Despite the commendable performance of these defense methods, we have observed that they tend to exhibit a structural bias in terms of their defense capability on nodes with low degree (i.e., tail nodes), which is similar to the structural bias of traditional GNNs on nodes with low degree in the clean graph. Therefore, in this work, we propose a defense strategy by including hetero-homo augmented graph construction, NN augmented graph construction, and multi-view node-wise attention modules to mitigate the structural bias of GNNs against adversarial attacks. Notably, the hetero-homo augmented graph consists of removing heterophilic links (i.e., links connecting nodes with dissimilar features) globally and adding homophilic links (i.e., links connecting nodes with similar features) for nodes with low degree. To further enhance the defense capability, an attention mechanism is adopted to adaptively combine the representations from the above two kinds of graph views. We conduct extensive experiments to demonstrate the defense and debiasing effect of the proposed strategy on benchmark datasets.
View on arXiv@article{fang2025_2504.20848, title={ Mitigating the Structural Bias in Graph Adversarial Defenses }, author={ Junyuan Fang and Huimin Liu and Han Yang and Jiajing Wu and Zibin Zheng and Chi K. Tse }, journal={arXiv preprint arXiv:2504.20848}, year={ 2025 } }