Language models can behave in unexpected and unsafe ways, and so it is valuable to monitor their outputs. Internal activations of language models encode additional information that could be useful for this. The baseline approach for activation monitoring is some variation of linear probing on a particular layer: starting from a labeled dataset, train a logistic regression classifier on that layer's activations. Recent work has proposed several approaches which may improve on naive linear probing, by leveraging additional computation. One class of techniques, which we call "prompted probing," leverages test time computation to improve monitoring by (1) prompting the model with a description of the monitoring task, and (2) applying a learned linear probe to resulting activations. Another class of techniques uses computation at train time: training sparse autoencoders offline to identify an interpretable basis for the activations, and e.g. max-pooling activations across tokens using that basis before applying a linear probe. However, one can also prompt the model with a description of the monitoring task and use its output directly. We develop and test novel refinements of these methods and compare them against each other. We find asking the model zero-shot is a reasonable baseline when inference-time compute is not limited; however, activation probing methods can substantially outperform this baseline given sufficient training data. Specifically, we recommend prompted probing when inference-time compute is available, due to its superior data efficiency and good generalization performance. Alternatively, if inference-time compute is limited, we find SAE-based probing methods outperform raw activation probing.
View on arXiv@article{tillman2025_2504.20271, title={ Investigating task-specific prompts and sparse autoencoders for activation monitoring }, author={ Henk Tillman and Dan Mossing }, journal={arXiv preprint arXiv:2504.20271}, year={ 2025 } }