ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.16918
31
0

OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents

23 April 2025
Raghav Thind
Youran Sun
Ling Liang
Haizhao Yang
    LLMAG
ArXivPDFHTML
Abstract

Optimization plays a vital role in scientific research and practical applications. However, formulating a concrete optimization problem described in natural language into a mathematical form and selecting a suitable solver to solve the problem requires substantial domain expertise. We introduce OptimAI, a framework for solving Optimization problems described in natural language by leveraging LLM-powered AI agents, and achieve superior performance over current state-of-the-art methods. Our framework is built upon the following key roles: (1) a formulator that translates natural language problem descriptions into precise mathematical formulations; (2) a planner that constructs a high-level solution strategy prior to execution; and (3) a coder and a code critic capable of interacting with the environment and reflecting on outcomes to refine future actions. Ablation studies confirm that all roles are essential; removing the planner or code critic results in 5.8×5.8\times5.8× and 3.1×3.1\times3.1× drops in productivity, respectively. Furthermore, we introduce UCB-based debug scheduling to dynamically switch between alternative plans, yielding an additional 3.3×3.3\times3.3× productivity gain. Our design emphasizes multi-agent collaboration, and our experiments confirm that combining diverse models leads to performance gains. Our approach attains 88.1% accuracy on the NLP4LP dataset and 82.3% on the Optibench dataset, reducing error rates by 58% and 52%, respectively, over prior best results.

View on arXiv
@article{thind2025_2504.16918,
  title={ OptimAI: Optimization from Natural Language Using LLM-Powered AI Agents },
  author={ Raghav Thind and Youran Sun and Ling Liang and Haizhao Yang },
  journal={arXiv preprint arXiv:2504.16918},
  year={ 2025 }
}
Comments on this paper