ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.15773
22
0

Clifford Group Equivariant Diffusion Models for 3D Molecular Generation

22 April 2025
Cong Liu
Sharvaree P. Vadgama
David Ruhe
Erik Bekkers
Patrick Forré
    DiffM
ArXivPDFHTML
Abstract

This paper explores leveraging the Clifford algebra's expressive power for \E(n)\E(n)\E(n)-equivariant diffusion models. We utilize the geometric products between Clifford multivectors and the rich geometric information encoded in Clifford subspaces in \emph{Clifford Diffusion Models} (CDMs). We extend the diffusion process beyond just Clifford one-vectors to incorporate all higher-grade multivector subspaces. The data is embedded in grade-kkk subspaces, allowing us to apply latent diffusion across complete multivectors. This enables CDMs to capture the joint distribution across different subspaces of the algebra, incorporating richer geometric information through higher-order features. We provide empirical results for unconditional molecular generation on the QM9 dataset, showing that CDMs provide a promising avenue for generative modeling.

View on arXiv
@article{liu2025_2504.15773,
  title={ Clifford Group Equivariant Diffusion Models for 3D Molecular Generation },
  author={ Cong Liu and Sharvaree Vadgama and David Ruhe and Erik Bekkers and Patrick Forré },
  journal={arXiv preprint arXiv:2504.15773},
  year={ 2025 }
}
Comments on this paper