Large Language Models (LLMs), such as ChatGPT, are reshaping content creation and academic writing. This study investigates the impact of AI-assisted generative revisions on research manuscripts, focusing on heterogeneous adoption patterns and their influence on writing convergence. Leveraging a dataset of over 627,000 academic papers from arXiv, we develop a novel classification framework by fine-tuning prompt- and discipline-specific large language models to detect the style of ChatGPT-revised texts. Our findings reveal substantial disparities in LLM adoption across academic disciplines, gender, native language status, and career stage, alongside a rapid evolution in scholarly writing styles. Moreover, LLM usage enhances clarity, conciseness, and adherence to formal writing conventions, with improvements varying by revision type. Finally, a difference-in-differences analysis shows that while LLMs drive convergence in academic writing, early adopters, male researchers, non-native speakers, and junior scholars exhibit the most pronounced stylistic shifts, aligning their writing more closely with that of established researchers.
View on arXiv@article{lin2025_2504.13629, title={ Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing }, author={ Cong William Lin and Wu Zhu }, journal={arXiv preprint arXiv:2504.13629}, year={ 2025 } }