ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.13220
24
0

SSTAF: Spatial-Spectral-Temporal Attention Fusion Transformer for Motor Imagery Classification

17 April 2025
Ummay Maria Muna
Md. Mehedi Hasan Shawon
Md Jobayer
Sumaiya Akter
Saifur Rahman Sabuj
ArXivPDFHTML
Abstract

Brain-computer interfaces (BCI) in electroencephalography (EEG)-based motor imagery classification offer promising solutions in neurorehabilitation and assistive technologies by enabling communication between the brain and external devices. However, the non-stationary nature of EEG signals and significant inter-subject variability cause substantial challenges for developing robust cross-subject classification models. This paper introduces a novel Spatial-Spectral-Temporal Attention Fusion (SSTAF) Transformer specifically designed for upper-limb motor imagery classification. Our architecture consists of a spectral transformer and a spatial transformer, followed by a transformer block and a classifier network. Each module is integrated with attention mechanisms that dynamically attend to the most discriminative patterns across multiple domains, such as spectral frequencies, spatial electrode locations, and temporal dynamics. The short-time Fourier transform is incorporated to extract features in the time-frequency domain to make it easier for the model to obtain a better feature distinction. We evaluated our SSTAF Transformer model on two publicly available datasets, the EEGMMIDB dataset, and BCI Competition IV-2a. SSTAF Transformer achieves an accuracy of 76.83% and 68.30% in the data sets, respectively, outperforms traditional CNN-based architectures and a few existing transformer-based approaches.

View on arXiv
@article{muna2025_2504.13220,
  title={ SSTAF: Spatial-Spectral-Temporal Attention Fusion Transformer for Motor Imagery Classification },
  author={ Ummay Maria Muna and Md. Mehedi Hasan Shawon and Md Jobayer and Sumaiya Akter and Saifur Rahman Sabuj },
  journal={arXiv preprint arXiv:2504.13220},
  year={ 2025 }
}
Comments on this paper