ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.09006
22
0

Learning in Structured Stackelberg Games

11 April 2025
Maria-Florina Balcan
Kiriaki Fragkia
Keegan Harris
ArXivPDFHTML
Abstract

We study structured Stackelberg games, in which both players (the leader and the follower) observe information about the state of the world at time of play. Importantly, this information may contain information about the follower, which the leader may use when deciding her strategy. Under this setting, we show that no-regret learning is possible if and only if the set of mappings from contexts to follower types that the leader uses to learn is not ``too complex''. Specifically, we find that standard learning theoretic measures of complexity do not characterize learnability in our setting and we give a new dimension which does, which we term the Stackelberg-Littlestone dimension. In the distributional setting, we give analogous results by showing that standard complexity measures do not characterize the sample complexity of learning, but a new dimension called the Stackelberg-Natarajan dimension does. We then show that an appropriate empirical risk minimization procedure achieves the corresponding sample complexity.

View on arXiv
@article{balcan2025_2504.09006,
  title={ Learning in Structured Stackelberg Games },
  author={ Maria-Florina Balcan and Kiriaki Fragkia and Keegan Harris },
  journal={arXiv preprint arXiv:2504.09006},
  year={ 2025 }
}
Comments on this paper