ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.08804
17
0

Estimating Item Difficulty Using Large Language Models and Tree-Based Machine Learning Algorithms

9 April 2025
Pooya Razavi
Sonya J. Powers
ArXivPDFHTML
Abstract

Estimating item difficulty through field-testing is often resource-intensive and time-consuming. As such, there is strong motivation to develop methods that can predict item difficulty at scale using only the item content. Large Language Models (LLMs) represent a new frontier for this goal. The present research examines the feasibility of using an LLM to predict item difficulty for K-5 mathematics and reading assessment items (N = 5170). Two estimation approaches were implemented: (a) a direct estimation method that prompted the LLM to assign a single difficulty rating to each item, and (b) a feature-based strategy where the LLM extracted multiple cognitive and linguistic features, which were then used in ensemble tree-based models (random forests and gradient boosting) to predict difficulty. Overall, direct LLM estimates showed moderate to strong correlations with true item difficulties. However, their accuracy varied by grade level, often performing worse for early grades. In contrast, the feature-based method yielded stronger predictive accuracy, with correlations as high as r = 0.87 and lower error estimates compared to both direct LLM predictions and baseline regressors. These findings highlight the promise of LLMs in streamlining item development and reducing reliance on extensive field testing and underscore the importance of structured feature extraction. We provide a seven-step workflow for testing professionals who would want to implement a similar item difficulty estimation approach with their item pool.

View on arXiv
@article{razavi2025_2504.08804,
  title={ Estimating Item Difficulty Using Large Language Models and Tree-Based Machine Learning Algorithms },
  author={ Pooya Razavi and Sonya J. Powers },
  journal={arXiv preprint arXiv:2504.08804},
  year={ 2025 }
}
Comments on this paper