Self-report questionnaires have long been used to assess LLM personality traits, yet they fail to capture behavioral nuances due to biases and meta-knowledge contamination. This paper proposes a novel multi-observer framework for personality trait assessments in LLM agents that draws on informant-report methods in psychology. Instead of relying on self-assessments, we employ multiple observer agents. Each observer is configured with a specific relational context (e.g., family member, friend, or coworker) and engages the subject LLM in dialogue before evaluating its behavior across the Big Five dimensions. We show that these observer-report ratings align more closely with human judgments than traditional self-reports and reveal systematic biases in LLM self-assessments. We also found that aggregating responses from 5 to 7 observers reduces systematic biases and achieves optimal reliability. Our results highlight the role of relationship context in perceiving personality and demonstrate that a multi-observer paradigm offers a more reliable, context-sensitive approach to evaluating LLM personality traits.
View on arXiv@article{huang2025_2504.08399, title={ Beyond Self-Reports: Multi-Observer Agents for Personality Assessment in Large Language Models }, author={ Yin Jou Huang and Rafik Hadfi }, journal={arXiv preprint arXiv:2504.08399}, year={ 2025 } }