MMLA: Multi-Environment, Multi-Species, Low-Altitude Drone Dataset

Real-time wildlife detection in drone imagery supports critical ecological and conservation monitoring. However, standard detection models like YOLO often fail to generalize across locations and struggle with rare species, limiting their use in automated drone deployments. We present MMLA, a novel multi-environment, multi-species, low-altitude drone dataset collected across three sites (Ol Pejeta Conservancy and Mpala Research Centre in Kenya, and The Wilds in Ohio), featuring six species (zebras, giraffes, onagers, and African wild dogs). The dataset contains 811K annotations from 37 high-resolution videos. Baseline YOLO models show performance disparities across locations while fine-tuning YOLOv11m on MMLA improves mAP50 to 82%, a 52-point gain over baseline. Our results underscore the need for diverse training data to enable robust animal detection in autonomous drone systems.
View on arXiv@article{kline2025_2504.07744, title={ MMLA: Multi-Environment, Multi-Species, Low-Altitude Drone Dataset }, author={ Jenna Kline and Samuel Stevens and Guy Maalouf and Camille Rondeau Saint-Jean and Dat Nguyen Ngoc and Majid Mirmehdi and David Guerin and Tilo Burghardt and Elzbieta Pastucha and Blair Costelloe and Matthew Watson and Thomas Richardson and Ulrik Pagh Schultz Lundquist }, journal={arXiv preprint arXiv:2504.07744}, year={ 2025 } }