22
0

A Comparison of Deep Learning Methods for Cell Detection in Digital Cytology

Abstract

Accurate and efficient cell detection is crucial in many biomedical image analysis tasks. We evaluate the performance of several Deep Learning (DL) methods for cell detection in Papanicolaou-stained cytological Whole Slide Images (WSIs), focusing on accuracy of predictions and computational efficiency. We examine recentoff-the-shelf algorithms as well as custom-designed detectors, applying them to two datasets: the CNSeg Dataset and the Oral Cancer (OC) Dataset. Our comparison includes well-established segmentation methods such as StarDist, Cellpose, and the Segment Anything Model 2 (SAM2), alongside centroid-based Fully Convolutional Regression Network (FCRN) approaches. We introduce a suitable evaluation metric to assess the accuracy of predictions based on the distance from ground truth positions. We also explore the impact of dataset size and data augmentation techniques on model performance. Results show that centroid-based methods, particularly the Improved Fully Convolutional Regression Network (IFCRN) method, outperform segmentation-based methods in terms of both detection accuracy and computational efficiency. This study highlights the potential of centroid-based detectors as a preferred option for cell detection in resource-limited environments, offering faster processing times and lower GPU memory usage without compromising accuracy.

View on arXiv
@article{acerbis2025_2504.06957,
  title={ A Comparison of Deep Learning Methods for Cell Detection in Digital Cytology },
  author={ Marco Acerbis and Nataša Sladoje and Joakim Lindblad },
  journal={arXiv preprint arXiv:2504.06957},
  year={ 2025 }
}
Comments on this paper