ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.06143
30
0

ARLO: A Tailorable Approach for Transforming Natural Language Software Requirements into Architecture using LLMs

8 April 2025
Tooraj Helmi
ArXivPDFHTML
Abstract

Software requirements expressed in natural language (NL) frequently suffer from verbosity, ambiguity, and inconsistency. This creates a range of challenges, including selecting an appropriate architecture for a system and assessing different architectural alternatives. Relying on human expertise to accomplish the task of mapping NL requirements to architecture is time-consuming and error-prone. This paper proposes ARLO, an approach that automates this task by leveraging (1) a set of NL requirements for a system, (2) an existing standard that specifies architecturally relevant software quality attributes, and (3) a readily available Large Language Model (LLM). Specifically, ARLO determines the subset of NL requirements for a given system that is architecturally relevant and maps that subset to a tailorable matrix of architectural choices. ARLO applies integer linear programming on the architectural-choice matrix to determine the optimal architecture for the current requirements. We demonstrate ARLO's efficacy using a set of real-world examples. We highlight ARLO's ability (1) to trace the selected architectural choices to the requirements and (2) to isolate NL requirements that exert a particular influence on a system's architecture. This allows the identification, comparative assessment, and exploration of alternative architectural choices based on the requirements and constraints expressed therein.

View on arXiv
@article{helmi2025_2504.06143,
  title={ ARLO: A Tailorable Approach for Transforming Natural Language Software Requirements into Architecture using LLMs },
  author={ Tooraj Helmi },
  journal={arXiv preprint arXiv:2504.06143},
  year={ 2025 }
}
Comments on this paper