ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.03821
30
3

A Hybrid Wavelet-Fourier Method for Next-Generation Conditional Diffusion Models

4 April 2025
Andrew Kiruluta
Andreas Lemos
    DiffM
ArXivPDFHTML
Abstract

We present a novel generative modeling framework,Wavelet-Fourier-Diffusion, which adapts the diffusion paradigm to hybrid frequency representations in order to synthesize high-quality, high-fidelity images with improved spatial localization. In contrast to conventional diffusion models that rely exclusively on additive noise in pixel space, our approach leverages a multi-transform that combines wavelet sub-band decomposition with partial Fourier steps. This strategy progressively degrades and then reconstructs images in a hybrid spectral domain during the forward and reverse diffusion processes. By supplementing traditional Fourier-based analysis with the spatial localization capabilities of wavelets, our model can capture both global structures and fine-grained features more effectively. We further extend the approach to conditional image generation by integrating embeddings or conditional features via cross-attention. Experimental evaluations on CIFAR-10, CelebA-HQ, and a conditional ImageNet subset illustrate that our method achieves competitive or superior performance relative to baseline diffusion models and state-of-the-art GANs, as measured by Fréchet Inception Distance (FID) and Inception Score (IS). We also show how the hybrid frequency-based representation improves control over global coherence and fine texture synthesis, paving the way for new directions in multi-scale generative modeling.

View on arXiv
@article{kiruluta2025_2504.03821,
  title={ A Hybrid Wavelet-Fourier Method for Next-Generation Conditional Diffusion Models },
  author={ Andrew Kiruluta and Andreas Lemos },
  journal={arXiv preprint arXiv:2504.03821},
  year={ 2025 }
}
Comments on this paper