ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.01707
46
0

InfiniteICL: Breaking the Limit of Context Window Size via Long Short-term Memory Transformation

2 April 2025
Bowen Cao
Deng Cai
W. Lam
    CLL
ArXivPDFHTML
Abstract

In-context learning (ICL) is critical for large language models (LLMs), but its effectiveness is constrained by finite context windows, particularly in ultra-long contexts. To overcome this, we introduce InfiniteICL, a framework that parallels context and parameters in LLMs with short- and long-term memory in human cognitive systems, focusing on transforming temporary context knowledge into permanent parameter updates. This approach significantly reduces memory usage, maintains robust performance across varying input lengths, and theoretically enables infinite context integration through the principles of context knowledge elicitation, selection, and consolidation. Evaluations demonstrate that our method reduces context length by 90% while achieving 103% average performance of full-context prompting across fact recall, grounded reasoning, and skill acquisition tasks. When conducting sequential multi-turn transformations on complex, real-world contexts (with length up to 2M tokens), our approach surpasses full-context prompting while using only 0.4% of the original contexts. These findings highlight InfiniteICL's potential to enhance the scalability and efficiency of LLMs by breaking the limitations of conventional context window sizes.

View on arXiv
@article{cao2025_2504.01707,
  title={ InfiniteICL: Breaking the Limit of Context Window Size via Long Short-term Memory Transformation },
  author={ Bowen Cao and Deng Cai and Wai Lam },
  journal={arXiv preprint arXiv:2504.01707},
  year={ 2025 }
}
Comments on this paper