ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.00460
43
0

MetaLoRA: Tensor-Enhanced Adaptive Low-Rank Fine-tuning

1 April 2025
Maolin Wang
Xiangyu Zhao
    AI4CE
ArXivPDFHTML
Abstract

There has been a significant increase in the deployment of neural network models, presenting substantial challenges in model adaptation and fine-tuning. Efficient adaptation is crucial in maintaining model performance across diverse tasks and domains. While Low-Rank Adaptation (LoRA) has emerged as a promising parameter-efficient fine-tuning method, its fixed parameter nature limits its ability to handle dynamic task requirements effectively. Adapting models to new tasks can be challenging due to the need for extensive fine-tuning. Current LoRA variants primarily focus on general parameter reduction while overlooking the importance of dynamic parameter adjustment and meta-learning capabilities. Moreover, existing approaches mainly address static adaptations, neglecting the potential benefits of task-aware parameter generation in handling diverse task distributions. To address these limitations, this Ph.D. research proposes a LoRA generation approach to model task relationships and introduces MetaLoRA, a novel parameter-efficient adaptation framework incorporating meta-learning principles. This work develops a comprehensive architecture that integrates meta-parameter generation with adaptive low-rank decomposition, enabling efficient handling of both task-specific and task-agnostic features. MetaLoRA accurately captures task patterns by incorporating meta-learning mechanisms and dynamic parameter adjustment strategies. To our knowledge, this research represents the first attempt to provide a meta-learning enhanced LoRA variant, offering improved adaptation capability while maintaining computational efficiency in model fine-tuning.

View on arXiv
@article{wang2025_2504.00460,
  title={ MetaLoRA: Tensor-Enhanced Adaptive Low-Rank Fine-tuning },
  author={ Maolin Wang and Xiangyu Zhao },
  journal={arXiv preprint arXiv:2504.00460},
  year={ 2025 }
}
Comments on this paper